264 research outputs found

    Single-Quadrature Continuous-Variable Quantum Key Distribution

    Get PDF
    Most continuous-variable quantum key distribution schemes are based on the Gaussian modulation of coherent states followed by continuous quadrature detection using homodyne detectors. In all previous schemes, the Gaussian modulation has been carried out in conjugate quadratures thus requiring two independent modulators for their implementations. Here, we propose and experimentally test a largely simplified scheme in which the Gaussian modulation is performed in a single quadrature. The scheme is shown to be asymptotically secure against collective attacks, and considers asymmetric preparation and excess noise. A single-quadrature modulation approach renders the need for a costly amplitude modulator unnecessary, and thus facilitates commercialization of continuous-variable quantum key distribution.Comment: 13 pages, 7 figure

    Continuous Variable Quantum Key Distribution with a Noisy Laser

    Get PDF
    Existing experimental implementations of continuous-variable quantum key distribution require shot-noise limited operation, achieved with shot-noise limited lasers. However, loosening this requirement on the laser source would allow for cheaper, potentially integrated systems. Here, we implement a theoretically proposed prepare-and-measure continuous-variable protocol and experimentally demonstrate the robustness of it against preparation noise stemming for instance from technical laser noise. Provided that direct reconciliation techniques are used in the post-processing we show that for small distances large amounts of preparation noise can be tolerated in contrast to reverse reconciliation where the key rate quickly drops to zero. Our experiment thereby demonstrates that quantum key distribution with non-shot-noise limited laser diodes might be feasible.Comment: 10 pages, 6 figures. Corrected plots for reverse reconciliatio

    The Cauchy problem for Lorentzian Dirac operators under non-local boundary conditions

    Full text link
    Non-local boundary conditions, such as the Atiyah-Patodi-Singer (APS) conditions, for Dirac operators on Riemannian manifolds are well understood while not much is known for such operators on spacetimes with timelike boundary. We define a class of Lorentzian boundary conditions that are local in time and non-local in the spatial directions and show that they lead to a well-posed Cauchy problem for the Dirac operator. This applies in particular to the APS conditions imposed on each level set of a given Cauchy temporal function.Comment: 37 pages, 4 figure

    MDI-QKD: Continuous- versus discrete-variables at metropolitan distances

    Get PDF
    In a comment, Xu, Curty, Qi, Qian, and Lo claimed that discrete-variable (DV) measurement device independent (MDI) quantum key distribution (QKD) would compete with its continuous-variable (CV) counterpart at metropolitan distances. Actually, Xu et al.'s analysis supports exactly the opposite by showing that the experimental rate of our CV protocol (achieved with practical room-temperature devices) remains one order of magnitude higher than their purely-numerical and over-optimistic extrapolation for qubits, based on nearly-ideal parameters and cryogenic detectors (unsuitable solutions for a realistic metropolitan network, which is expected to run on cheap room-temperature devices, potentially even mobile). The experimental rate of our protocol (expressed as bits per relay use) is confirmed to be two-three orders of magnitude higher than the rate of any realistic simulation of practical DV-MDI-QKD over short-medium distances. Of course this does not mean that DV-MDI-QKD networks should not be investigated or built, but increasing their rate is a non-trivial practical problem clearly beyond the analysis of Xu et al. Finally, in order to clarify the facts, we also refute a series of incorrect arguments against CV-MDI-QKD and, more generally, CV-QKD, which were made by Xu et al. with the goal of supporting their thesis.Comment: Updated reply to Xu, Curty, Qi, Qian and Lo (arXiv:1506.04819), including a point-to-point rebuttal of their new "Appendix E: Addendum

    Quantum cryptography with an ideal local relay

    Get PDF
    We consider two remote parties connected to a relay by two quantum channels. To generate a secret key, they transmit coherent states to the relay, where the states are subject to a continuous-variable (CV) Bell detection. We study the ideal case where Alice's channel is lossless, i.e., the relay is locally situated in her lab and the Bell detection is performed with unit efficiency. This configuration allows us to explore the optimal performances achievable by CV measurement-device-independent (MDI) quantum key distribution (QKD). This corresponds to the limit of a trusted local relay, where the detection loss can be re-scaled. Our theoretical analysis is confirmed by an experimental simulation where 10^-4 secret bits per use can potentially be distributed at 170km assuming ideal reconciliation.Comment: in Proceedings of the SPIE Security + Defence 2015 conference on Quantum Information Science and Technology, Toulouse, France (21-24 September 2015) - Paper 9648-4

    Continuous-variable quantum computing on encrypted data

    Get PDF
    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the unconditional security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits, which can ultimately allow for the potential widespread adoption of this quantum technology in future cloud-based computing networks.Comment: Main text (6 pages) plus Appendices (14 pages), 13 figure

    An Evaluation of Moreau’s Time-Stepping Scheme for the Simulation of a Legged Robot

    Get PDF
    International audienceA state-of-the-art simulation technique that solves the equations of motion together with the set-valued contact and impulse laws by the time-stepping scheme of Moreau is introduced to the legged robotics community. An analysis is given that shows which of the many variations of the method fits best to legged robots. Two different methods to solve the discretized normal cone inclusions are compared: the projected over-relaxed Jacobi and Gauss-Seidel iteration. The methods are evaluated for an electrically-driven quadrupedal robot in terms of robustness, accuracy, speed and ease of use. Furthermore, the dependence of the simulation speed on the choice of the generalized coordinates is examined. The proposed technique is implemented in C++ and compared to a fast and simple approach based on compliant contact models. In conclusion, the introduced method with hard contacts is very beneficial for the simulation of legged robots
    • …
    corecore